
 Application of Neural Networks for Software Quality Prediction Using

Object-Oriented Metrics

Tong-Seng Quah, Mie Mie Thet Thwin

School of Electrical & Electronic Engineering

Nanyang Technological University

ITSQuah@.ntu.edu.sg

Abstract

This paper presents the application of neural networks

in software quality estimation using object-oriented

metrics. Quality estimation includes estimating reliability

as well as maintainability of a software. Reliability is

typically measured as the number of defects.

Maintenance effort can be measured as the number of

lines changed per class. In this paper, two kinds of

investigation are performed. The first on predicting the

number of defects in a class and the second on predicting

the number of lines change per class. Two neural

network models are used, they are Ward neural network

and General Regression neural network (GRNN). Object-

oriented design metrics concerning inheritance related

measures, complexity measures, cohesion measures,

coupling measures and memory allocation measures are

used as the independent variables. GRNN network model

is found to predict more accurately than Ward network

model.

1. Introduction

Many object-oriented metrics have been proposed over

the last decade. Prediction models using object-oriented

design metrics can be used for obtaining assurances about

software quality. In practice, quality estimation means

either estimating reliability or maintainability. Reliability

is typically measured as the number of defects. These can

be pre-release or post-release. The estimated number of

defects can also be normalized by a size measure to

obtain a defect density estimate. Maintainability is

typically measured as change effort. Change effort can

mean either the average effort to make a change to a

class, or the total effort spent on changing a class.

Khoshgoftarr et al. introduced the use of the neural

networks as a tool for predicting software quality. In [24],

they presented a discriminant model and a neural network

model of the large telecommunications system,

classifying modules as not fault-prone or fault-prone.

They compared the neural-network model with a

nonparametric disciminant model, and found the neural

network model had better predictive accuracy.

We conduct our study in the object-oriented paradigm.

However since the object-oriented paradigm exhibits

different characteristics from the procedural paradigm,

different software metrics have to be defined and used.

Our neural network model aims to predict object

oriented software quality by estimating the number of

faults and the number of lines changed per class. We used

software metrics including both object-oriented metrics

and traditional complexity metrics. Object oriented

metrics used include inheritance related measures,

cohesion measures and coupling measures.

We also introduce using Ward neural network and

General Regression neural network to improve prediction

result for estimating software quality. Ward neural

network is a backpropagation network with different

activation functions. They are applied to hidden layer

slabs to detect different features in a pattern processed

through a network to lead to better prediction. We use a

Gaussian function in one hidden slab to detect feature in

the mid-range of the data and a Gaussian complement in

another hidden slab to detect features for the upper and

lower extremes of the data. Thus, the output layer will get

different “views of the data”. Combining the two feature

sets in the output layer leads to a better prediction.

Another architecture that we have chosen is the

General Regression Neural Network (GRNN). Specht

[23] state that it is a memory-based network that provide

estimates of continuous variables and converges to the

underlying (linear or nonlinear) regression surface. This

is a one-pass learning algorithm with a highly parallel

structure. Even with sparse data is a multidimensional

measurement space; the algorithm provides smooth

transitions from one observed value to another.

2. Related work

There is great interest in the use of object-oriented

approach in software engineering. With the increasing use

of object-oriented methods in new software development

there is a growing need to both document and improve

current practices in object-oriented design and

development.

Many measures have been proposed in the literature to

capture the quality of object-oriented (OO) code and

design and used for detecting fault-proneness of classes

[3, 4, 6, 9, 17]. Many investigations using statistical

methods had been made to predict software quality.

Emanm and Melo [4] have constructed a model to

predict which classes in a future release of a commercial

Java application will be faulty. The model was then

validated on a subsequent release of the same application.

Their results indicated that the prediction model had a

high accuracy.

Fioravanti and Nesi have extracted over 200 different

object-oriented metrics to identify a suitable model for

detecting fault-proneness of classes [9]. They came to the

conclusion that only few of them were relevant for

identifying fault-prone classes.

A set of object-oriented metrics in terms of their

usefulness in predicting fault-proneness, an important

software quality indicator is empirically validated in [21].

Their validation is carried out using two data analysis

techniques: regression analysis and discriminant analysis.

L. Briand et al., the relationships between existing

object-oriented coupling, cohesion, and inheritance

measures and the probability of fault detection in system

classes during testing explored empirically. Their

univariate analysis have shown that many coupling and

inheritance measures are strongly related to the

probability of fault detection in a class. Their multivariate

analysis results showed that by using some of the

coupling and inheritance measures, very accurate models

could be derived to predict in which classes most of the

faults actually lie [11].

Most of these prediction models are built using

statistical models. Neural networks have seen an

explosion of interest over the years, and are being

successfully applied across a range of problem domains,

in areas as diverse as finance, medicine, engineering,

geology and physics. Indeed, anywhere that there are

problems of prediction, classification or control, neural

networks are being introduced. Neural network can be

used as a predictive model because it is very sophisticated

modeling techniques capable of modeling complex

functions.

In [2], Khoshgoftaar et al presented a case study of

real-time avionics software to predict the testability of

each module from static measurements of source code.

They found that neural network is a promising technique

for building predictive models, because they are able to

model nonlinear relationships.

Our neural network model aims to predict object

oriented software quality by estimating the number of

faults and the number of lines changed per class. We also

introduce using Ward neural network and General

Regression neural network to improve prediction result

for estimating software quality.

3. Design of the study

3.1. Object-oriented metrics

As discussed in section I, we are introducing the

research on software defects and maintenance efforts

predictions into object oriented paradigm using neural

networks. As such object oriented metrics have to be

selected and used in our study. To detect the software

defects and predict the maintenance effort, the following

metrics are used:

Depth of Inheritance Tree (DIT) of a class is the length

of the longest path from the class to the root in the

inheritance hierarchy. This determines the complexity of

a class based on its ancestors, since a class with many

ancestors is likely to inherit much of the complexity of its

ancestors. The deeper a class is in the hierarchy, the

greater the number of methods it is likely to inherit

making it more complex to predict its behavior. This has

direct relationship to maintainability.

Number of Children (NOC) measures the number of

immediate descendants of a particular class. This

measures an amount of potential reuse of the class. The

more reuse a class might have, the more complex it may

be, and the more classes are directly affected by changes

in it implementation. This increases the magnitude of

ripple effects.

Coupling Between Objects (CBO) is defined as the

number of other classes to which it is coupled. Coupling

metrics measure the degree of inter dependence among

the components of a software system. High coupling

makes a system more complex; highly interrelated

modules are harder to understand, change or correct. By

minimize coupling, propagating errors across modules

can be avoided.

Response For a Class (RFC) is the number of methods

that can potentially be executed in response to a message

received by an object of that class. The response set of a

class consists of the set of M methods of the class, and

the set of methods directly or indirectly invoked by

methods in M.

Inheritance Coupling (IC) provides the number of

parent classes to which a given class is coupled. A class is

coupled to its parent class if one of its inherited methods

is functionally dependent on the new or redefined

methods in the parent class.

Coupling Between Methods (CBM) provides the total

number of new/redefined methods in which all the

inherited methods are coupled. CBM measures the total

number of function dependency relationships between the

inherited methods and new/redefined methods.

Slab2Weighted Methods per Class (WMC) is the summation

of McCabe’s cyclomatic complexity of each local

method. The more control flows a class’s methods have,

the harder it is to understand them, thus, the harder it is to

maintain them. A method with a low cyclomatic

complexity is generally better.

Slab1
Slab5Slab4

Slab3

Weighted Methods per Class (WMC1) is defined as

the number of all member functions and operators in each

class. Figure 1. Ward Neural Network.
Number of Object/Memory Allocation (NOMA)

metric measures the total number of statements that

allocates new objects or memories in a class. A class with

more object/memory allocating activities tends to

introduce more the object management faults that are

related to object management such as object copying,

dangling reference, object memory usage faults and so

on.

Message Passing Coupling (MPC) gives an indication

of how many message are passed among objects of the

classes. The number of messages sent out from a class

indicates how dependent the implementation of the local

methods is on the methods in other classes.

Lack of Cohesion in Methods (LCOM) is the number

of pairs of methods in the class using no attributes in

common, minus the number of pairs of methods that do.

If this difference is negative, LCOM is set to zero.

Data Abstraction Coupling (DAC) is the number of

attributes in a class that have as their type another class.

The number of local methods (NOM) defined in a

class indicates the operation property of a class. The more

methods a class has, the more complex will be the class’s

interface.

SIZE1 is calculated by counting the number of

executable statements (measured by number of

semicolons) in a class.

SIZE2 is the total number of attributes and methods of

a class.

3.2. Neural network modeling

The first neural network architecture that we have

chosen is the Ward Network[25]. It is a Backpropagation

network that has three slabs (slab2, slab3 and slab4) in the

hidden layer. Hidden layers in neural network are known

as feature detectors. A slab is a group of neurons. When

each slab in the hidden layer has a different activation

function, it offers three ways of viewing the data. We use

linear function to the output slab (slab5). We use

hyperbolic tangent (tanh) function is used in one slab of

hidden layer (slab3) because it is better for continuous

valued outputs especially if the linear function is used on

the output layer. Gaussian function is used in another

slab of the hidden layer (slab2). This function is unique,

because unlike the others, it is not an increasing function.

It is the classic bell shaped curve, which maps high values

into low ones, and maps mid-range values into high ones.

Gaussian Complement is used in the third slab of the

hidden layer (slab4) to bring out meaningful

characteristics in the extremes of the data. The learning

rate and momentum are set to 0.1 and initial weight is set

to 0.3 in this study.

Another neural network architecture that we have

chosen is the General Regression Neural Network

(GRNN). GRNN is based on a one-pass learning

algorithm with a highly parallel structure. GRNN is a

powerful memory based network that could estimates

continuous variables and converges to the underlying

regression surface. The strength of GRNN is that it is able

to deal with sparse data effectively. Specht [23] claims

that the algorithm in GRNN is able to provide a smooth

transition from one observed value to another, even with

sparse data in a multidimensional measurement space.

GRNN applications are able to produce continuous

valued outputs. For GRNN networks, the number of

neurons in the hidden layer is usually the number of

patterns in the training set because each pattern in the

training set is represented by on neurons. The primary

advantage to the GRNN is the speed at which the network

can be trained. Training a GRNN is performed in one

pass. The smoothing factor allows the GRNN to

interpolate between the patterns or spectra in the training

set.

3.3. Principal component analysis

If a group of variables in a data set are strongly

correlated, these variables are likely to measure the same

underlying dimension (i.e., class property) of the object to

be measured. Many object-oriented metrics have high

correlation with each other. For example, the number of

local method (NOM) is strongly correlated with class

size. The confounding effect of class size is studied in [7].

Principal component analysis (PCA) is a standard

technique to identify the underlying, orthogonal

dimensions that explain relations between the variables in

a data set. Principal components (PCs) are linear

combinations of the standardized independent variables.

It is also a data reduction technique. The varimax rotation

method was adopted in this study. It is an orthogonal

rotation method that minimizes the number of variable

that have high loadings on each factor. It simplifies the

interpretation of the factors. We selected the PCs only

PCs whose eigenvalue is larger than 1.0.

4. Prediction of maintenance effort

This investigation is to predict the maintenance effort.

The commercial software product QUES(Quality

Evaluation System) data is used in this investigation,

which is presented in [20]. The maintenance effort is

measured by using the number of lines changed per class.

A line change could be an addition or a deletion. A

change of the content of a line is counted as a deletion

followed by an addition. This measurement is used in this

study to estimate the maintainability of the object-

oriented systems. In this study, DIT, MPC, RFC, LCOM,

DAC, WMC, NOM, SIZE1 and SIZE2 are used as

independent variable. Their correlation matrix is shown in

Appendix C. QUES system was designed and developed

with Class-Ada. First, each data pattern was examined for

erroneous entries, outliers, blank entries and redundancy.

After standardizing the metric data, we performed the

principal component analysis. Table 1 presents the

relationship between the original object-oriented metrics

and the domain metrics for QUES system.

For QUES system, PCA identified three PCs, which

capture 89% of the data set variance; Table 1 shows for

each rotated component the coefficients of the measure,

with coefficients larger than 0.6 set in boldface. The eigen

value, the percentage of the data set variance each PC

describes, and the cumulative variance percentage are

also provided. Based on the analysis of the coefficients

associated with each metrics within each of the three

rotated components, the PCs are interpreted as follows:

The first component is highly correlated with NOM,

SIZE2, RFC, LCOM, WMC, SIZE1 and DAC. NOM is a

better representative, however, because it is less

correlated with the other two components. The second

component is most highly correlated with MPC. The third

component is most highly correlated with DIT. This

suggests that NOM, MPC and DIT metrics should be

focused on further analysis for this system.

We sorted the data according to the number of changes

values and divided data into training, testing, and

production sets using 3:1:1 ratio. Test set is used to

prevent over training network so they will generalize

well. We used the production data set to evaluate model

performance. It can be tested the network’s results with

the data the network has never seen before.

We used Ward network and GRNN network for

predicting number of changes. Table 2 shows the

summary of Ward network design. In our General

Regression neural network design, there were 71 neurons

in hidden layer, 3 neurons in input layer and 1 neuron in

output layer. The experimental results that are obtained

from the Ward model and GRNN neural network model

for QUES system are tabulated in Appendix A.

Table 1. Rotated principle components for QUES
system

metrics PC1 PC2 PC3

DIT 0.060 0.027 0.966

MPC -0.023 0.966 0.037

RFC 0.877 0.333 0.043

LCOM 0.869 -0.156 0.059

DAC 0.796 0.027 0.427

WMC 0.832 0.258 -0.27

NOM 0.971 -0.132 0.097

SIZE1 0.812 0.475 -0.089

SIZE2 0.963 -0.093 0.190

Eigenvalues 5.384 1.388 1.248

% Variance 59.826 15.424 13.863

Cummulative

% Variance
59.826 75.250 89.113

Table 2. Ward neural network architecture used for
QUES system

Slab1 Slab2 Slab3 Slab4 Slab5

No. of

neurons
3 3 3 3 1

4.1. Goodness of fit test

To measure the goodness of fit of the model, we use

the coefficient of multiple determination (R-square), the

coefficient of correlation(r), r-square, mean square error,

mean absolute error, minimum absolute error and

maximum absolute error. These statistical measures are

shown in Table 3. The correlation of the predicted change

and the observed change is represented by the coefficient

of correlation (r). An r value of 0.747 in Ward neural

network and 0.8590 in GRNN network represents high

correlations for cross-validation. The number of

observations is 71. The significance level of a cross-

validation is indicated by an p value. A commonly

accepted p value is 0.05. An two tailed probability p

values of 0.000 in both cross-validation shows a high

degree of confidence for the successful validations. We

conclude that the impact of model prediction is valid in

the population.

Table 3. Experimental result for QUES system

Ward GRNN

R-square 0.5545 0.7220

r (correlation

coefficient)
0.747 0.8590

r- square 0.558 0.7379

Mean square error 817.004 509.790

Mean absolute error 20.782 12.182

Min absolute error 0.094 0

Max absolute error 114.161 109.385

t values 9.329047 13.98484

p values 0.000 0.000

5. Prediction of number of faults

The second investigation is emphasized on the

prediction of the number of faults. Faults are appeared

when a program does not perform according to users’

specification at testing and operations stages. The

applications used in this prediction are three subsystems

of a HMI (Human Machine Interface) software, which is

a fully networked Supervisory Control and Data

Acquisition system. This software, which consists of

more than 200 subsystems and 3 million lines of code,

has been used by many manufacturing companies for

several years. Although each subsystem selected plays a

different role in the system and performs a different

functionality, they share some similar characteristics that

meet with our selection criteria. Subsystem A is a user

interface-oriented program that allows customers to

configure the basic product operations and device

communications. It consists of 20 classes that define 256

new, re-defined or virtual functions, and approximately

5,600 lines of code in length. Subsystem B is a real time

data logging process that collects data as needed and logs

data into the database, based on the user configuration.

This subsystem defines 48 classes and 353 new, re-

defined or virtual functions, comprising approximately

21,300 lines of code. Subsystem C is a communication-

oriented program that acts as a router not only delivering

messages between processes within the same host but also

forwarding messages to other hosts. This subsystem

defines 29 classes and 293 new, re-defined or virtual

functions and contains approximately 16,000 lines of

code [5].

 In this investigation, we used WMC1, DIT, NOC,

CBO, RFC, IC, CBM and NOMA as independent

variables. Their correlation matrix is shown in Appendix

D.

After standardizing the metric data, we performed the

principal component analysis. Table 4 presents the

relationship between the original object-oriented metrics

and the domain metrics for HMI system.

After performing PCA, it identified three PCs, which

capture 78.29% of the data set variance as shown in Table

4. The first component is highly correlated with RFC,

WMC1, CBM, IC and NOMA. The second component is

most highly correlated with NOC and CBO. The third

component is most highly correlated with DIT.

Table 4. Rotated Principle Components for HMI
system

Metrics PC1 PC2 PC3

WMC1 0.9068 -0.0544 -0.1768

DIT -0.0358 -0.0400 0.9286

NOC -0.0274 0.8710 -0.0694

CBO -0.0043 0.8508 0.0471

RFC 0.9399 -0.0818 -0.0919

IC 0.6452 0.1678 0.5140

CBM 0.8636 0.0811 0.2932

NOMA 0.6216 -0.1029 0.4508

Eigenvalues 3.256 1.539 1.462

% Variance 40.703 19.238 18.279

Cummulative

% Variance
40.703 59.940 78.219

Table 5. Ward neural network architecture used for
HMI system

Slab1 Slab2 Slab3 Slab4 Slab5

No. of

neurons
3 4 4 4 1

Ward Neural design summary is presented in Table 5.

For General Regression neural network we use 97

neurons in the hidden layer as that is the number of

patterns in the collected data. There are 3 neurons in the

input layer and 1 neuron in the output layer in our GRNN

network design. The neural network results that are

obtained from the ward model and GRNN neural network

model for HMI system are tabulated in Appendix B.

5.1. Goodness of fit test

Goodness of fit measures is shown in Table 6. The

value of coefficient of correlation (r) value of 0.9476 in

Ward neural network and 0.9531 in GRNN network

represents high correlations for cross-validation. The p

value for HMI system 0.000 and shows a high degree of

confidence for the successful validations.

Table 6. Experimental result for HMI system

Ward GRNN

R-square 0.8715 0.9077

r (correlation

coefficient)
0.9476 0.9531

r- square 0.8979 0.9084

Mean square error 1.584 1.138

Mean absolute error 0.823 0.765

Min absolute error 0.001 0

Max absolute error 6.211 4.295

t values 28.88816 28.88154

p values 0.000 0.000

6. Conclusion

This empirical study presents the prediction of faults

and maintenance effort using two neural network models.

From the results presented above, object-oriented metrics

chosen in this study appear to be useful in predicting

software quality. GRNN network model is found to

predict more accurately than Ward network model. We

also performed multivariate regression models to compare

neural network models. Regression analysis results are

shown in Appendix E.

Our future research direction aims to estimate the

software readiness using neural network models. To

estimate the readiness, three factors will be considered in

our future study: (1) how many faults are remaining in the

programs (2) how many changes are required to correct

the errors and (3) how much time is required in changing

the programs. Software metrics concerning with

polymorphism measures, inheritance related measures,

complexity measures, cohesion measures, coupling

measure, dynamic memory allocation measure, database

operations measures and size measures will be used.

7. Acknowledgement

The authors would like to thank Associate Professor

Dr. Mei-Hwa Chen, Computer Science Department,

University at Albany, State University of New York, for

allowing us to test our model with data they had collected

from industrial real-time systems [5].

8. References

[1] El Emam, ”A primer on object-oriented measurement”, Proc.

Seventh International Software Metrics Symposium, 2001, pp.

185 –187.

[2] T. M. Khoshgoftaar, E.B. Allen, Z. Xu, “Predicting

testability of program modules using a neural network”,

Proceedings of the 3rd IEEE Symposium on Application-

Specific Systems and Software Engineering Technology, 2000,

pp. 57-62.

[3] L.C. Briand, J.W. Daly, J.K. Wust, “A unified framework

for coupling measurement in object-oriented systems”, IEEE

Transactions on Software Engineering, 1999, pp. 91-121.

[4] El Emam, W. Melo, C.M. Javam, “The Prediction of Faulty

Classes Using Object-Oriented Design Metrics”, Journal of

Systems and Software, Elsevier Science, 2001, pp. 63-75.

[5] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen,”An

empirical study on object-oriented metrics”, Proceedings of the

Sixth IEEE International Symposium on Software Metrics,

1999, pp. 242-249.

[6] A. Mounir Boukadoum, Houari A. Sahraoui and Hakim

Lounis, “Machine Learning Approach to Predict Software

Evolvability using fuzzy binary trees”, International Conference

on Artificial Intelligence, 2001.

[7] El Emam, K., Benlarbi, S., Goel, N. and Rai, S.N., “The

confounding effect of class size on the validity of object-

oriented metrics”, IEEE Transactions on Software Engineering,

vol. 27, pp. 630-650, 2001.

[8] F. Fioravant, “A metric framework for the assessment of

object-oriented systems”, Proceedings of IEEE International

Conference on Software Maintenance, pp. 557–560, 2001.

[9] F. Fioravanti, P. Nesi, “A study on fault-proneness detection

of object-oriented systems”, Fifth European Conference on

Software Maintenance and Reengineering, 2001, pp. 121 –130,

2001.

[10] Ralf ReiBing, “Towards a Model for Object-Oriented

Design Measurement”, Proceedings of the 5th International

ECOOP Workshop on Quantitative Approaches in Object-

Oriented Software Engineering, pp. 71-84, 2001.

[11] L. Briand, J. Wüst, John W. Daly and V. Porter, "Exploring

the Relationships between Design Measures and Software

Quality in Object-Oriented Systems", Journal of Systems and

Software, 51(2000) p 245-273.

[12] M. Cartwright, and M. Shepperd, "An Empirical

Investigation of Object Oriented Software System", IEEE

Transactions on Software Engineering, vol. 26, pp. 786-796,

2000.

[13] L. Etzkorn, H. Delugach, “Towards a semantic metrics

suite for object-oriented design”, Proc. 34th International

Conference on Technology of Object-Oriented Languages and

Systems, 2000, pp. 71 –80, 2000.

[14] N.E. Fenton and N. Ohlsson, ”Quantitative analysis of

faults and failures in a complex software system”, IEEE

Transactions on Software Engineering, vol. 26, pp. 797-814,

2000.

[15] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji,

"Validating Object-oriented Design Metrics on a Commercial

Java Application". Technical Report, NRC/ERB-1080, NRC

44146, 2000.

[16] Todd L. Graves, Alan F. Karr, J.S. Marron, and Harvey

Siy, “Predicting Fault Incidence Using Software Change

History”, IEEE Transactions on Software Engineering, vol. 26,

2000.

[17] L.C. Briand, W.L Melo, J. Wust, “Assessing the

applicability of fault-proneness models across object-oriented

software projects”, IEEE Transactions on Software Engineering,

vol. 28 pp. 706 –720, 2002.

[18] Mie Mie Thet Thwin and Tong-Seng Quah, “Application of

Neural Network for Predicting Software Development Faults

Using Object-Oriented Design Metrics”, Preceeding of 9th

Internatinal Conference on Neural Information Processing,

Singapore, 18-22 Nov, 2002, vol.5, pp. 2312, 2002.

[19] Jon T. S. Quah and Mie Mie Thet Thwin, “Prediction of

Software Readiness Using Neural Network”, Proceedings of 1st

International Conference on Information Technology &

Applications (ICITA 2002), Australia, 25-28 Nov, 2002.

[20] Wei Li and S. Henry, “Object-Oriented Metrics that Predict

Maintainability”, Journal of Systems and Software, 1993, pp.

111-122, 1993.

[21] Ping Yu, T. Systa, and H. Muller, “Predicting fault-

proneness using OO metrics. An industrial case study”,

Proceedings. of 6th European Conference on Software

Maintenance and Reengineering, 2002, pp. 99 –107, 2002.

[22] Frenund, John E., Williams, Frank J., Perles Benjamin M.,

“The Elementary Business Statistics- The Modern Approach”,

Prince-Hill, 1993.

[23] D.F, Specht, “A general regression neural network”.IEEE

Transactions on Neural Networks, vol. 2, Issue: 6, pp. 568-576,

1991.

[24] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J.

Aud, “Application of neural networks to software quality

modeling of a very large telecommunications system”, IEEE

Transactions on Neural Network, vol. 8, pp. 902-909, 1997.

[25] NeuroShell 2 Help, Ward Systms Group, Inc.

http://www.wardsystems.com.

Appendix A. Neural network results for QUES
system

PC1 PC2 PC3

Observed

change

Predicted

change

(Ward)

Predicted

change

(GRNN)

-0.13022 -1.64677 0.17929 6 12 7

-0.03039 -1.53992 0.24768 8 15 7

-0.3384 -1.44312 1.88978 9 20 9

-0.06182 -1.31265 0.15152 10 19 12

0.38454 -1.7059 -1.52689 14 50 24

-0.20789 -1.19234 0.30152 16 23 16

0.32482 -1.22358 0.13149 24 27 24

0.32482 -1.22358 0.13149 24 27 24

-0.51034 0.17986 3.72303 24 47 25

-0.52847 -0.37103 -1.49814 24 56 26

-0.45703 -0.15483 1.22508 25 55 25

-0.80264 0.53155 0.3626 26 70 59

-0.7083 -0.90828 -1.55791 26 44 26

-0.63144 -0.60917 -1.66117 28 51 26

0.17605 -1.07765 0.14892 28 26 24

-0.77388 -0.04587 0.29804 30 63 56

-0.77388 -0.04587 0.29804 30 63 56

-0.49412 -0.06956 0.19435 35 61 41

0.64859 -1.44491 0.16346 35 43 25

-0.77715 -0.69971 0.14314 38 51 52

0.68819 -0.78223 0.24383 38 42 38

0.78567 -0.05805 0.43647 38 56 47

-0.48266 -0.07729 0.15099 39 61 41

-0.52727 -0.1953 -1.57115 41 60 47

0.83053 -0.87824 0.17281 41 48 44

-0.93294 1.08382 0.31973 42 72 42

-0.82812 2.38145 0.49921 45 77 67

0.90263 -0.82797 -0.12397 45 54 45

-0.9431 2.11841 0.56337 46 75 86

0.34002 -0.59535 0.02217 47 40 38

-0.79137 0.53457 0.22929 48 70 70

-0.7862 0.43916 0.21822 48 69 76

-0.42231 0.40656 -1.23877 48 73 48

-0.54093 1.46946 0.46461 49 78 42

-0.76177 -0.30229 0.18144 52 59 67

-0.76478 -0.87679 0.33081 52 45 52

0.96278 -1.07335 0.15908 55 57 55

0.88353 0.26136 0.30633 56 66 58

-0.23708 1.60511 -1.31086 56 97 48

-0.84321 -0.49872 0.16672 62 56 65

-0.75731 -0.29668 0.18112 64 59 67

0.87751 0.03081 0.32011 68 60 58

-0.77864 -0.11337 0.19901 68 63 62

-0.28113 1.00686 -0.47416 70 82 57

2.02079 0.08606 -0.14748 70 99 72

1.81176 -0.139 0.08723 72 90 72

-0.7308 -0.06926 0.14359 75 63 64

-0.7241 -0.16134 0.13129 77 61 66

-0.75171 -0.17367 0.18025 78 61 65

-0.82307 0.15626 0.24549 79 66 65

1.57737 0.9669 -0.11944 80 92 80

1.41936 0.03292 -0.06634 81 73 81

-0.75592 -0.12406 0.16382 82 62 64

-0.71506 0.07609 0.2497 85 65 61

-0.66198 0.23844 0.18145 85 67 85

-0.72755 0.1471 0.15804 86 66 72

2.09191 0.50048 0.40952 88 93 88

2.10995 0.62771 0.00479 92 96 92

-0.71461 0.0112 0.12623 94 64 64

-0.01494 0.18925 -2.16237 98 76 48

-0.70921 0.458 0.14293 100 70 88

2.29648 1.40413 0.00921 101 108 101

0.65647 -1.64284 -3.65638 102 106 102

-0.65662 0.31795 0.16987 107 68 93

-0.64157 0.30697 0.17911 124 68 93

3.44685 0.82978 2.367 146 146 146

-0.72861 0.46487 0.17959 148 70 84

-0.73903 2.25183 0.30855 157 79 136

2.2554 0.18271 -0.33718 170 112 92

-0.59688 0.81619 0.16262 188 74 79

0.78041 3.48673 -2.90284 217 221 217

Appendix B. Neural network results for HMI system

pc1 pc2 pc3 actual

Predicted

faults

(GRNN)

Predicted

faults

(Ward)

-0.47911 0.79062 -0.02789 0 0 0

-0.7703 -0.35763 -0.34213 0 0 0

-0.40293 -0.39306 -0.5998 0 1 0

-0.69014 -0.104 0.18681 0 1 0

-0.0584 -0.28096 -0.80344 0 1 1

-0.46141 -0.23176 -0.5528 0 1 0

-0.63848 -0.31905 -1.01192 0 1 0

-0.50177 -0.5772 -0.28418 0 1 0

0.16403 -0.44226 -1.29833 0 1 2

-0.84585 -0.49019 1.11544 0 1 0

-0.7673 -0.44644 0.48293 0 1 0

-0.85166 -0.26875 1.96462 0 0 0

-0.51116 0.02657 3.4064 0 0 0

-0.35529 2.22454 0.64489 0 0 0

-0.77499 -0.25197 0.24186 0 1 0

-0.88265 -0.48719 1.14293 0 1 0

-0.61929 1.02751 -1.13168 0 0 0

-0.40885 0.11745 -1.2099 0 1 0

-0.59985 3.87507 -0.86161 0 0 0

-0.50717 -0.18786 -1.1422 0 1 0

-0.60115 -0.01121 -1.02648 0 1 0

-0.50228 -0.32963 -1.11537 0 1 0

-0.53881 -0.1712 -1.08141 0 1 0

-0.67117 -0.52063 -0.42455 0 0 0

-0.59208 -0.52736 -0.4828 0 0 0

-0.73872 -0.2045 -0.3599 0 0 0

-0.34673 0.5668 -1.2802 0 0 0

-0.28493 0.09597 -1.34806 0 0 0

-0.20724 1.07102 0.06917 0 0 0

-0.21197 0.77324 0.10073 0 1 0

-0.56078 -0.52964 -0.50704 0 0 0

-0.73872 -0.2045 -0.3599 0 0 0

-0.7022 -0.36292 -0.39386 0 0 0

-0.27518 -0.2978 0.14517 0 1 1

-0.49272 -0.22947 -0.52857 1 0 0

-0.33868 -0.39967 -0.6436 1 1 0

-0.09922 -0.16542 0.04729 1 2 1

-0.45972 -0.17793 -1.13966 1 1 0

-0.13741 -0.13137 1.15569 1 2 1

-0.72658 0.52299 1.24796 1 2 0

-0.31712 0.07205 1.74602 1 1 1

-0.73714 -0.19171 1.05849 1 1 0

0.45253 0.09601 3.38005 1 1 1

-0.56248 -0.34856 0.5976 1 1 0

-0.65886 -0.30338 0.41951 1 1 0

0.00195 0.09154 0.9481 1 3 1

-0.66682 -0.26433 0.17197 1 1 0

-0.57293 -0.46829 0.3562 1 1 0

-0.44387 -0.2412 0.76912 1 2 1

-0.16736 -0.30272 0.81768 1 2 1

-0.46543 0.43214 -1.15177 1 0 0

0.21242 -0.07986 -0.60118 1 1 1

-0.13191 0.41002 -1.33605 1 0 0

-0.08498 -0.25779 -1.13254 1 1 1

-0.64481 -0.21135 -0.4326 1 0 0

-0.61214 -0.37109 -0.45863 1 0 0

-0.69698 -0.51906 -0.40358 1 0 0

-0.66018 -0.52207 -0.43108 1 0 0

-0.66018 -0.52207 -0.43108 1 0 0

-0.21504 -0.35091 -1.33673 1 1 1

-0.04826 -0.51376 -0.31157 2 1 1

0.23161 -0.33306 1.2071 2 3 2

0.36896 -0.0493 -0.91835 2 1 2

0.01816 -0.23027 1.23626 2 3 2

0.381 -0.24819 -0.04207 2 3 2

0.13769 -0.48375 -0.72503 2 1 2

0.41256 -0.29215 0.19709 2 3 2

-0.22579 0.27821 1.77756 2 1 1

-0.10349 -0.21101 1.01439 2 2 1

0.37882 0.44969 0.57222 2 3 2

-0.24968 -0.07865 0.97012 2 2 1

1.28103 0.56944 0.17506 2 3 4

0.07336 -0.29396 0.05332 2 2 1

-0.29523 -0.39262 -0.70889 2 1 1

1.2526 -0.02 -0.2411 3 5 4

0.25962 0.06929 1.16248 3 3 2

0.17405 7.87669 -0.36831 3 3 3

0.09298 -0.06407 0.16382 3 2 1

-0.02974 -0.48558 -0.70129 3 1 1

0.43861 0.12657 -0.23085 4 3 2

0.95509 -0.22802 -0.14143 4 4 4

-0.07355 -0.05584 0.99195 4 3 1

-0.54869 -0.48264 -1.08315 4 1 0

0.06765 -0.66473 -0.73192 4 1 2

0.17777 -0.56151 -1.56538 5 1 2

1.28224 0.10586 1.46292 5 5 5

0.60391 -0.27949 0.92218 5 5 3

0.47778 -0.37408 0.03155 5 3 3

1.10359 -0.28756 1.11927 6 7 5

1.43123 -0.10319 0.07027 6 5 5

0.77266 -0.28437 0.08146 6 4 3

2.54536 0.48796 1.95135 8 8 8

1.74663 0.27797 -0.31074 8 7 6

2.93229 -0.27842 -1.07141 9 8 11

2.50374 -0.33844 -0.27325 10 8 10

0.84043 -0.2646 0.90815 10 6 4

6.45325 -0.48 -1.18791 28 28 27

Appendix C

Correlation Matrix

1.000 .018 .108 .123 .392 -.134 .125 .203 .012

.018 1.000 .331 -.102 .015 .136 -.114 -.083 .368

.108 .331 1.000 .820 .638 .738 .812 .805 .800

.123 -.102 .820 1.000 .560 .574 .884 .835 .541

.392 .015 .638 .560 1.000 .570 .809 .886 .639

-.134 .136 .738 .574 .570 1.000 .702 .690 .894

.125 -.114 .812 .884 .809 .702 1.000 .987 .695

.203 -.083 .805 .835 .886 .690 .987 1.000 .709

.012 .368 .800 .541 .639 .894 .695 .709 1.000

DIT

MPC

RFC

LCOM

DAC

WMC

NOM

SIZE2

SIZE1

Correlation

DIT MPC RFC LCOM DAC WMC NOM SIZE2 SIZE1

Appendix D

Correlation Matrix

1.000 -.091 -.041 -.044 .879 .417 .642 .468

-.091 1.000 -.053 -.003 -.044 .361 .177 .325

-.041 -.053 1.000 .503 -.075 .093 .003 -.145

-.044 -.003 .503 1.000 -.073 .066 .060 .023

.879 -.044 -.075 -.073 1.000 .507 .728 .505

.417 .361 .093 .066 .507 1.000 .759 .414

.642 .177 .003 .060 .728 .759 1.000 .594

.468 .325 -.145 .023 .505 .414 .594 1.000

WMC1

DIT

NOC

CBO

RFC

IC

CBM

NOMA

Correlation

WMC1 DIT NOC CBO RFC IC CBM NOMA

Appendix E

Regression Analysis Results

Ques

system
HMI system

R-square 0.42365 0.843596

r (correlation

coefficient)
0.650884 0.918619

r- square 0.42364 0.843861

t values 7.1217203 22.65902

p values <0.0001 <0.0001

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

